FIRE

PREVENTION AND CONTROL
AN INSTRUCTIONAL PACKAGE
MEMBER'S GUIDE

- HOW A FIRE BURNS
- CLASSES OF FIRE
- FIRE EXTINGUISHERS AND THEIR USE
- IDENTIFICATION OF COMMON FIRE HAZARDS
- DEVELOP AN ESCAPE PLAN
- HEAT & SMOKE DETECTORS
- YOUR FIRE DEPARTMENT

NAME_____________________
CLUB_____________________
BIRTHDATE_________________
YEARS IN PROJECT_______
YEARS IN 4-H_____

FLORIDA COOPERATIVE EXTENSION SERVICE
Institute of Food and Agricultural Sciences
University of Florida
Gainesville, Florida

John T. Woeste - Dean for Extension
FIRE
PREVENTION AND CONTROL
AN INSTRUCTIONAL PACKAGE
MEMBER'S GUIDE

- How a Fire Burns
- Classes of Fire
- Fire Extinguishers and Their Use
- Identification of Common Fire Hazards
- Develop an Escape Plan
- Heat & Smoke Detectors
- Your Fire Department

William J. Becker - Extension Safety Specialist
John Rutledge - Extension 4-H Youth Specialist
Institute of Food and Agricultural Sciences
University of Florida
Gainesville, Florida 32611
FIRE PREVENTION AND CONTROL
MEMBER'S GUIDE

Preface

This instructional package in Fire Prevention and Control is designed for 4-H and other youth. The authors are pleased that this package has found its way to you.

Fire, when controlled, is one of man's most valuable resources. But fire when out of control can be deadly and can cause serious, very painful and costly injury to people and result in millions of dollars in loss of property. We don't want this to happen to you or your family and that's why we ask you to study the seven lessons in this package carefully. We want you, your family and your home to be fire safe.

Your leader or teacher for this program in Fire Prevention and Control will assist you with these lessons, but it will be your responsibility to study and complete these lessons. We urge you to complete all the work-sheets and hope many of you will do some or all of the extra projects. You can make yourself, your family and your home "Fire-Safe".

William J. Becker
John Rutledge

Fires cause
Property losses
Injuries
Deaths
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Lesson</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>I HOW A FIRE BURNS</td>
<td>1</td>
</tr>
<tr>
<td>LESSON I - WORKSHEET</td>
<td>4</td>
</tr>
<tr>
<td>II CLASSES OF FIRES</td>
<td>8</td>
</tr>
<tr>
<td>LESSON II - WORKSHEET</td>
<td>11</td>
</tr>
<tr>
<td>III FIRE EXTINGUISHERS AND THEIR USE</td>
<td>14</td>
</tr>
<tr>
<td>LESSON III - WORKSHEET</td>
<td>18</td>
</tr>
<tr>
<td>IV IDENTIFICATION OF COMMON FIRE HAZARDS</td>
<td>21</td>
</tr>
<tr>
<td>LESSON IV - WORKSHEET</td>
<td>25</td>
</tr>
<tr>
<td>HOME FIRE HAZARD REPORT</td>
<td>26</td>
</tr>
<tr>
<td>FARM FIRE HAZARD REPORT</td>
<td>31</td>
</tr>
<tr>
<td>V DEVELOP A FIRE ESCAPE PLAN</td>
<td>36</td>
</tr>
<tr>
<td>LESSON V - WORKSHEET</td>
<td>40</td>
</tr>
<tr>
<td>VI HEAT AND SMOKE DETECTORS</td>
<td>43</td>
</tr>
<tr>
<td>LESSON VI - WORKSHEET</td>
<td>47</td>
</tr>
<tr>
<td>VII YOUR FIRE DEPARTMENT</td>
<td>46</td>
</tr>
<tr>
<td>LESSON VII - WORKSHEET</td>
<td>52</td>
</tr>
</tbody>
</table>
FIRE PREVENTION AND CONTROL

MEMBER'S GUIDE

LESSON I

HOW A FIRE BURNS

This lesson is designed to help you understand the three elements of a fire and how, by removing one or more of these essential elements, a fire can be prevented or extinguished.

OBJECTIVES:

1. Recognize and name the three elements necessary for a fire.
2. Draw and label a fire triangle.
3. Collect five solids which will burn and three solids which will not burn.
4. Name three liquids and two gases which will burn.
5. Name a common liquid and common gas which will not burn.
6. Demonstrate how to extinguish a fire by removing the fuel.
7. Demonstrate how to extinguish a fire by removing the air.
8. Demonstrate how to extinguish a fire by removing the heat.

INGREDIENTS FOR A FIRE:

Homes and Farms in Florida use devices and fuels to provide heat, light and power. These devices and fuels will cause out-of-control fires if they are misused. It is important to prevent fires, and to know what to do if one should occur.

For a fire to start and continue burning, three things must be HEAT, AIR, and FUEL. If these three things come together in the correct amounts, a fire starts.

Gases are all around us: Oxygen, hydrogen and carbon dioxide are in the air we breathe. Not all gases burn. Carbon dioxide is used to
extinguish fires. Oxygen doesn't burn but it is an essential element to support a fire. But some gases do burn. The natural gas used in kitchen stoves, water heaters and furnaces burns. So does butane in lighters, propane in torches, acetylene in oxy-acetylene welders. These gases can be very dangerous. Unlike solids and liquids they do not have to be heated and changed to a gaseous state. They are already gaseous, just add oxygen and heat and they burn - even explode.

Flammable liquids will not burn until they are vaporized or changed into gas. Some knowledge of common flammable liquids is essential for safe handling. Kerosene does not vaporize at room temperature, but does if heated. Gasoline vaporizes at normal temperature and is hazardous when exposed to the open air and a source of heat. Can you name other flammable liquids?

A block of wood does not burst into flame, but if it is ground into a fine dust it burns easily. Did you know solids turn to gases and then burn? A piece of steel is hard to burn, but when it is in the form of steel wool it will burn easily. When solids are divided into fine particles and sufficient oxygen (from the air) surrounds the particles to support combustion, then, with enough heat the solids will begin to burn. Heat of combustion is the amount of heat needed to cause a fuel to begin burning.

Combustible solids not only burn more readily if finely divided, but their position also makes a difference. Wood in a vertical position burns more rapidly than that in a horizontal position. The unfortunate person whose clothes catch fire should lie down. The fire will burn more slowly than if one remains standing.
The drop and roll procedure is recommended should your clothes ever catch on fire. Roll slowly and the lack of oxygen between you and the ground will extinguish the fire. Small areas can be put out by clamping your hand over the fire for a second or two. Rolling up in a carpet, heavy blanket or coat will also help put out the fire.

You are familiar with brush, grass, rubbish, and camp fires. At times certain conditions can cause these fires to get out of control. High winds, high temperature, and low humidity are factors which one should be aware of and consider before starting outdoor fires. You have probably noted the difference which weather makes in the ease of building campfires - wet wood simply does not ignite easily.

The three elements - heat, air, and fuel - necessary for a fire to burn create what the fireman refers to as the fire triangle. If one part of the fire triangle is removed, the fire will go out.

THE FIRE TRIANGLE
WORKSHEET

LESSON I

HOW A FIRE BURNS

1. Draw and label a fire triangle.

2. List the five solid materials you collected which will burn.
 1.
 2.
 3.
 4.
 5.

3. Which material on your list will burn easily? Why?

4. Which material is hardest to light? Why?

5. Name three liquids and two gases which burn.

 Liquids
 1.
 2.
 3.

 Cases
 1.
 2.
6. Name a liquid and a gas which will not burn.
 Liquid -
 Gas -

7. You were asked to collect solids which would and would not burn. Why were you not asked to collect liquids and gases which would or would not burn? Can you list three reasons?
 1.
 2.
 3.

8. Demonstrate for your leader or parents how a fire can be extinguished by removing the fuel. Explain what you did.

9. Demonstrate for your leader or parents how a fire can be extinguished by removing the air. Explain what you did.
10. Demonstrate for your leader or parents how a fire can be extinguished by removing the heat. Explain what you did.

EXTRA PROJECT

1. Construct a colorful fire triangle that could be used to teach others.

2. Develop a collection of flammable solid materials found around the home or farm. Mount and label small amounts of these materials on an 18" x 30" board in an attractive manner.

3. Develop a picture collection of flammable materials, (solid, liquid or gas) found around the home or farm. Develop an attractive, informative poster using these pictures.
FIRE PREVENTION AND CONTROL

MEMBER'S GUIDE
LESSON II

CLASSES OF FIRES

This lesson is designed to help you identify the classes of fire, common fuels for each class, safety practices to prevent each class of fire and ways to put out each class of fire.

OBJECTIVES:

1. Show materials or pictures of materials which burn, identify which class of fire each material would cause.
2. Give three examples of how one class of fire can change to another class of fire.
3. List two safety practices to follow in order to prevent each of the four classes of fires (a total of eight).
4. Explain how:
 - water can put out a fire.
 - a fire blanket can put out a fire.
 - CO₂ or chemicals can put out a fire.
5. Explain why:
 - water should never be used on a Class B fire.
 - water should never be used on a Class C fire.

CLASSES OF FIRES:

There are four classes of fire. Any one may occur in or around the home or farm. Knowing the classes of fires will help you to prevent or fight such a fire.
Class A Fires

Wood, paper, cloth, grass and trash are common fuels for Class A fires. To prevent these fires, keep these materials from collecting and from coming in contact with a source of heat. Neatness and cleanliness around the home and farm are good fire prevention practices. Get rid of waste paper, wood, grass and trash. Don't keep food for a fire!

Water is effective in fighting these fires. It works by lowering the temperature below the combustion point of the wet material. Wet materials need more heat to burn.

Class B Fires

Gasoline, gas, kerosene, fuel oil, oil, grease, oil base paints, varnishes and stains, cleaning fluids, solvents and lighter fluids are the fuels for Class B fires. These are petroleum products.

Proper storage of these materials is the best method of preventing Class B fires. Keep the products away from heat and provide good air circulation. Smoking around these products is an absolute No-No!
These fuels float on water, therefore water is not effective in fighting Class B fires. Indeed, water will often cause these fires to spread. The result is a bigger and more dangerous fire. To fight these fires you must remove either the fuel from the fire or the source of air. Fire and chemicals which remove the air are used to fight these fires. A wet blanket or even dirt or sand can be used to control or extinguish a Class B fire.

Class C Fires

Fires caused by electricity are Class C fires. A gasoline fire started with an electrical spark is first a Class C fire; then as the gasoline burns, it is a Class B fire. Light switches, electric motors and other electrical equipment can ignite dust or flammable vapors. Light bulbs, electric motors, toasters, electric stoves and other electrical appliances and equipment can cause fires if they are too hot and too close to material which will ignite.

Electrical fires are prevented by using electrical appliances and equipment properly and by keeping combustible materials away from these appliances and equipment.

Electrical fires are extinguished by turning off the electrical power and smothering the fire with CO$_2$ or dry chemicals. Never use water. Water will conduct electricity and you could easily be electrocuted. Fighting electrical fires with water is a "once in a lifetime experience!"
Class D Fires

Metals which burn are Class D fires. You have seen these fires. Whenever a flash picture is taken with a flash cube, a Class D fire occurs. Metal burned inside the flash cube. Have you seen fireworks, the kind used on the Fourth of July? Fireworks are burning metal compounds.

This type of fire is uncommon around the home and farm. However, if the flash cube was improperly constructed, damaged or used incorrectly it could cause burns and fires. The same is true with fireworks. Each year careless fireworks causes many injuries and costly fires.

Special chemicals which coat the burning metal are used to extinguish metal fires.
WORKSHEET

LESSON II

CLASSES OF FIRE

1. Shown ten combustible materials, list the class of fire each could cause, or collect ten combustible materials and list the class of fire each could cause.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>OF FIRE</th>
<th>MATERIAL</th>
<th>OF FIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td>6.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>7.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>8.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>9.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>10.</td>
<td></td>
</tr>
</tbody>
</table>

1. Give an example of:

1. An "A" fire changing to a "B" fire.

2. A "C" fire changing to an "A" fire.

3. A "C" fire changing to a "B" fire.

2. List two good practices to follow to prevent:

Class A Fires

1.

Class B Fires

1.

2.

Class C Fires

1.

2.

Class D Fires

1.

2.

4. Give two examples of putting out a fire by removing the fuel.

1.

2.

5. Give two examples of putting out a fire by removing the source of oxygen.

1.

2.

6. Give the most common method of putting out a fire by raising the heat of combustion of the material.
7. Water should not be used on class B fires because:

8. Water should not be used on class C fires because:

EXTRA PROJECTS

1. Collect pictures of different classes of fires. Develop an attractive display.

2. Take pictures of potential fire locations around your home and/or farm. Put them in a scrapbook and explain why each is a potential fire location, the class fire each would be and practices which will keep these fires from ever happening.
FIRE PREVENTION AND CONTROL

MEMBER'S GUIDE
LESSON III

FIRE EXTINGUISHERS AND THEIR USE

This lesson is designed to help you learn about different types of fire extinguishers and how to properly use the correct extinguisher for the class of fire.

OBJECTIVES:

1. Name five common items found around the home or farm which can be used to extinguish fires.

2. Sown five different types of fire extinguishers:
 - identify which ones could be used for:
 - a trash fire
 - a gasoline or oil fire
 - an electrical fire
 - identify which extinguisher would be best for:
 - a paper or wood fire
 - a car or tractor engine fire
 - a grease fire on an electric stove
 - a stuffed chair or sofa fire
 - identify which extinguisher would put out the largest:
 - class A fire
 - class B fire
 - class C fire

3. Name three businesses in your area which sell and service fire extinguishers.

4. Demonstrate ability to use one type of fire extinguisher to extinguish fires.
TYPES OF FIRE EXTINGUISHERS:

Fire extinguishers are all around your home and farm. How many can you think of? Examples are garden hoses, pails or waste containers for water, brooms, shovels and rakes, sand or dirt, blankets and baking soda. If you have a grease fire in a frying pan, would a tight-fitting cover be a good fire extinguisher? What other fire extinguishers can you think of and how could they be used to put out a fire? We need to be aware of these fire extinguishers that we have all around us and know when and how to use them. Can you think of a situation when a coat you might be wearing could serve as a fire extinguisher?

Most of the time when we think of fire extinguishers we think of tanks or cans mounted on the wall, sitting on a shelf, or attached to a tractor. These are commercial fire extinguishers specifically designed for fire fighting. There are many kinds, but for our purposes around the home or farm there are four major types of fire extinguishers:

Type A - Use on class A fires, wood, paper, grass, etc.
Type B - Use on class B fires, oil, gas, paint, etc.
Type C - Use on class C fires, electrical fires
Type D - Use on class D fires, metal fires

Combination - AB; BC: ABC

Quality fire extinguishers should be purchased from reputable dealers. Read the label before purchase. Is the extinguisher approved by the Underwriter's Laboratories, Inc., or the Factory Mutual Engineering Corporation? If not, don't buy it! Is it the right type for your need? Which symbols does it carry - A, B, C? Is it the right size?

You see fire extinguishers labeled 4-A: 16-B: C. What does this mean? First, it can be used on A, B, or C fires. The 4 and 16 indicate
that it will extinguish 4 square feet of a class A fire or 16 square feet of a class B fire. Could you determine the value of a fire extinguisher from this information?

Finally, check how to use the fire extinguisher. Is the mechanism easy to use and safe? Or will the fire be out of control before you can make it work?

Type A Fire Extinguishers

These extinguishers are normally filled with water. The water may contain an anti-freeze or a dissolved salt. Compressed air or CO₂ gases create a pressure, causing the water to spray. The most common size is 2 1/2 gallons.

Type A&B Fire Extinguishers

These extinguishers are either loaded stream or foam type. Both can conduct electricity and should not be used on electrical fires or sprayed onto equipment or electrical appliances which are energized.

Type B&C Fire Extinguishers

These are chemical extinguishers and there are several kinds. Carbon Dioxide and halogenated compounds are used for class B and C fires. Most of these extinguishers can be used on Class A fires, but because most of them discharge in 8-25 seconds, they are only effective with small class A fires.
With electrical fire, always shut off the electrical appliance or equipment or the fire may restart after the effects of the extinguishers are gone.

USING THE FIRE EXTINGUISHER:

There are many types of fire extinguishers and they work in different ways. Always read the instructions on the extinguisher before it is used. Don't wait for a fire to start to learn how to use the extinguisher! Learn to use it now.

With Class A fires, direct the stream at the base of the fire, working from side to side or around the fire.

With Class B fires, use a "fanning" action, rapidly moving from side to side beginning well in front of the fire and beyond the sides.

With Class C fires, aim the extinguisher at the electrical appliance or equipment which is on fire.

Always have fire extinguishers recharged immediately after they have been used. Forgetting this could result in a costly fire the next time. Reliable fire extinguisher dealers and many fire departments provide this service.

LOCATING THE FIRE EXTINGUISHERS:

Fire extinguishers should be located near, but not in, areas where the fire danger is high. Some of these places are the kitchen, furnace room, garages, tractor and fuel storage areas. Can you think of other dangerous areas in or around your home or farm? Fire extinguishers should be located where they are easily seen and reached, NOT in the back of the broom closet, behind the stove or in a locked cabinet!

Know how to use a FIRE EXTINGUISHER
1. List five common items found around a home or farm which can be used to extinguish fires. Give an example of how each could be used.

<table>
<thead>
<tr>
<th>TOOL OR ITEM</th>
<th>EXAMPLE OF USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
</tr>
</tbody>
</table>

2. Study the label on a fire extinguisher and then fill in the following blanks.

Manufacturer ___________________________ Type _________

Charged weight or size _________________ Date of inspection ________

Has the extinguisher been used? _______ How can you tell? _________

On what kind of fires can this extinguisher be used? ___________________

How is this fire extinguisher operated? ____________________________
3. You will be shown 3-5 fire extinguishers numbered 1-2-3-4-5. Which of these extinguishers could be used:
 - on a gasoline mower fire _____ - on a bed fire _____
 - on a trash barrel fire _____ - on an electric motor fire _____
 - on a kitchen grease fire _____ - on a Class A fire _____
 - as an all around extinguisher for the home _____
 - on a fire in a car or on a tractor _____

4. Name one place in your area where you can purchase fire extinguishers and have them serviced.

 __

5. If you could purchase three fire extinguishers for your home or farm, what types would you purchase and where would you locate each one?

 TYPE LOCATION
 1. ___________________________ ___________________________
 2. ___________________________ ___________________________
 3. ___________________________ ___________________________
EXTRA PROJECT

1. Develop a poster showing the types of fire extinguishers and use of each.

2. Develop a list of businesses in your area who sell and service fire extinguishers.

3. Make a chart listing (6-10) or more types of fire extinguishers sold in your area, indicating type, size, price and cost of refilling each.

<table>
<thead>
<tr>
<th>TYPE</th>
<th>SIZE</th>
<th>COST OF REFILLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIRE PREVENTION AND CONTROL

MEMBER'S GUIDE

LESSON IV

IDENTIFICATION OF COMMON FIRE HAZARDS

This lesson is designed to assist you to learn how to identify common fire hazards found around the home and/or farm. You should complete one or more home and/or farm inspections as a result of this lesson.

OBJECTIVES:

1. Given a room, building and/or area with 12-15 prearranged fire hazards, locate a minimum of ten hazards.

2. Complete a fire hazard survey of a home and/or farm.

HAZARD IDENTIFICATION:

The best way to prevent fires is to identify fire hazards and then correct or remove the hazards. It is smarter to prevent a fire than to fight one. You certainly don't want members of your family or friends to be among the 7,500 killed or 300,000 injured this year.

Common fire hazards in and around the home and farm are:

• roofing materials that burn
• poor heating systems and chimneys
• careless smoking, smoking in bed
• improper use of flammable fabrics
• overload electrical circuits, use of oversized fuses
• improper use or storage of gasoline and other flammable liquids
• misuse of electrical appliances or unapproved appliances
• papers and rubbish in attics, basements, halls and stairwells
improper storage of hay and other combustible materials

failure to protect buildings and antenna from lightning

The secret to fire prevention is to keep flammable materials - things which burn easily - away from a source of heat, fire or spark.

Flammable Liquids

Flammable liquids need only a spark to ignite. The igniting can be so fast that there is an explosion. What does this tell us about the use and storage of these materials?

- Use flammable liquids far away from sources of flames, sparks or heat.
- Use flammable liquids for their intended use only. Gasoline is intended for burning in engines, not for starting an open fire or for cleaning purposes.
- Use flammable liquids only in airy, open areas. Outside is best.
- Lawn mowers and tractors must be shut off and the engines cooled before refueling.
- All flammable fluids must be stored in proper containers in well ventilated areas away from any source of heat or sparks.

Hot Liquids

Fire is not the only cause of burns. Hot water, coffee, and grease are causes of serious burns. Have you ever had a burn? Remember the pain? But hot liquids are not the only problem. Hot pans, stoves, ovens, space heaters, fireplaces and light bulbs are other causes of burns.
These burns are common to young children. They like to explore, they climb, grab and move quickly. We need to be aware of these hazards and follow two precautions. First, keep hot items out of reach of small children. Keep unattended young children out of rooms or areas where they could be burned.

Hazardous Materials

It is also important to use caution with hazardous materials. Hazardous materials can start fires and cause burns. Some examples of common dangers are:

- Children getting so close to open fires, heaters, or charcoal grills that their clothing might catch on fire
- Adults working over or around open fires while wearing flammable clothing
- Cigarettes falling off ash trays onto paper, floors, furniture or bedding
- Dropping of hot cigarette butts in dry grass, trash or waste containers
- Placing hazardous materials too close to a source of heat, kitchen range, space heater or fireplace
Electricity

Electricity is a major cause of fires. It is estimated that there are 75,000 home fires each year started by faulty electrical wiring, appliances or incorrect use of wiring. It takes special knowledge to check many electrical installations around the home or farm. If you have any question about the safety of any electrical wiring or appliance, have it inspected by a qualified electrician. Lights that dim or flicker, motors which spark and start with difficulty or overheat are all clues to problems. That is the time to call an expert to correct the problem.

There are many electrical problems which you can spot and have corrected. Fuses or circuit breakers should match the wiring size. The following table should help you determine if the proper fuse or circuit breaker is used. If fuses blow or the circuit breakers go off, there is a problem. Find it now and if you can't, have an electrician locate and correct the problem. Overloaded circuits cause hot wires and fires.

PROPER FUSE PROTECTION FOR COPPER WIRE

<table>
<thead>
<tr>
<th>Wire Sizes Number</th>
<th>Maximum Fuse Size-Amps</th>
<th>Thickness or Diameter of Wire</th>
<th>How Wire is Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>1 penny</td>
<td>Lights and outlets</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>1 nickel</td>
<td>Lights and outlets</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>2 dimes</td>
<td>Water heater & clothes drier</td>
</tr>
</tbody>
</table>
Check the light switches and wall outlets. Are the covers on? Is there any evidence of overheating? If there are small children in the house, insert childproof plugs and outlets.

Extension cords are another source of danger. Check their condition and locations. Are they brittle, cracked, under rugs, in locations where they are stepped on, bent, pinched, or damaged in any way?

Are the cords on electrical appliances in good condition? Three-prong plugs must always be used in three-prong outlets.

All electrical appliances, devices and materials should be UL approved. Using unapproved electrical items is inviting a fire into your home.

Use waterproof or weatherproof electrical devices in all areas which are or may be wet. Water and electricity are a bad mixture and no one needs that type of shocking experience.

Dustproof or explosive-proof fixtures should be used in any areas where dust may collect. Woodworking shops, feed rooms, grain storage areas and haybarns are dangerous dust locations.

Summary

Fires find enough places to happen without our help. Survey your home and/or farm. Locate the potential fire hazards and correct all problems. Fires in fireplaces, dinner by candlelight, and July Fourth fireworks are enjoyable uses of fire, but there is nothing enjoyable about house fires. Do what you can to prevent them.
WORKSHEET
LESSON IV

IDENTIFICATION OF COMMON FIRE HAZARDS

1. You are going to be shown an area with 12-15 easily identified fire hazards. You are to survey the area and identify at least ten of these hazards. List them below.

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.

 9.
 10.
 11.
 12.
 13.
 14.
 15.

2. Given a home or farm and the appropriate fire hazard report, survey the home or farm. Your leader will do the same. When the survey is completed, the results of your survey will be compared with your leader's survey. If either of you identified hazards not identified by the other, go back and point out where these hazards are located.

3. Complete a home and/or farm fire hazard report for your home or farm with your parents or other adult. Correct the fire hazards located or urge that they be corrected if you are unable to correct them. Return the completed report to the next meeting or fire safety class.

EXTRA PROJECT

As a community service, survey other homes or farms in your neighborhood. Why not make this a club project?
HOME FIRE-HAZARD PROJECT

Caution:
1. Complete hazard identification activities with parent, guardian or property owner present.
2. Do not handle or dismantle any electrical component during hazard identification activities.

ELECTRICAL

1. Are all electrical outlets grounded so as to accommodate grounded (3-wire) appliances and equipment? □ □ □ □

2. Are all junction boxes, outlets, switches, and fittings covered with no exposed wires or terminals? □ □ □ □

3. Are electric wires firmly supported or in conduit? □ □ □ □

4. Does the wiring insulation appear in good condition, (not cracked, broken, or brittle)? □ □ □ □

5. Are there enough convenience outlets throughout the home to eliminate the need for "makeshift" wiring and the use of long extension cords? □ □ □ □

6. Are all extension cords used in the home free of frays, broken areas or cracked plugs? □ □ □ □

7. Do all electrical appliances and equipment used in the home carry the "U.L." label? □ □ □ □

8. If extension cords are used, are they properly located- not hung on nails, run through doorways or under rugs? □ □ □ □

9. Are there extra fuses of the correct size located near the fuse box? □ □ □ □

HEATING AND COOKING

1. Is the furnace maintained and adjusted by a competent serviceman at least once a year? □ □ □ □

2. Is the furnace room kept clean and free of combustible materials? □ □ □ □

3. Are fuel oil tanks vented to outside of the building? □ □ □ □

4. Are fuel oil tanks and fuel lines free of obvious leaks? □ □ □ □

5. Is there a charged fire extinguisher readily available in the furnace room? □ □ □ □

6. Is the door to the furnace room tightly fitted and kept closed at night? □ □ □ □
Heating and Cooking Cont.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Does Not Apply</th>
<th>Hazard Corrects</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Is the area around the hot water heater kept free of combustible materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Are LPG containers providing fuel for heating and cooking located outside of buildings?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Are LPG containers located on solid foundations?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Are LPG containers located at least 5 feet away from windows, doors, or other building openings?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Are LPG valves and regulators covered for protection from weather or damage?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Is the fuel line for an oil or LPG burning stove, heater or furnace equipped with a shut-off valve near the fuel tank?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Are stoves and other cooking equipment kept clean and free of grease accumulations?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Are storage compartments under or over stoves and ovens used to store only non-combustible items?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Are curtains near stoves arranged as to prevent their blowing over the burners or flames?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Is there a charged fire extinguisher of the appropriate type readily available in the kitchen?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wood Burning Stoves and Fireplaces

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>Does Not Apply</th>
<th>Hazard Corrects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the stove the correct size for the size of the room that will be heated?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Is the stove free from broken parts or cracks that make it unsafe to operate?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Has a layer of sand or firebrick been placed on the bottom and/or sides of firebox if suggested by the manufacturer?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Is the stove located on a non-combustible floor or is there an approved floor protection material placed beneath the stove?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Does the floor protection extend out at least 12 inches from front opening?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Is there a minimum of 36 inches between the stove and combustible materials? If not, is a fire-resistant material used to protect woodwork and other combustible materials?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WOOD BURNING STOVES AND FIREPLACES CONT.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Does Not Apply</th>
<th>Hazard Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Is there a screen provided for use on open front type stoves and fireplaces?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Is there a charged extinguisher of the appropriate type readily available?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9. Is small kindling or paper used to start fires rather than flammable liquids?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Is a metal container with tight-fitting lid available for ash disposal?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11. If the stove or fireplace has been recently installed, has the insurance company been notified?</td>
<td>☑</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

STOVE PIPES AND CHIMNEYS

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Does Not Apply</th>
<th>Hazard Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is 26 gauge or thicker stovepipe used on all wood burning stoves?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>2. Is the total length of stovepipe used on a woodburning stove less than 10 feet?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>3. Are all stovepipe joints tightly connected by rivets, screws, or corrugated sleeve joints?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>4. Does stovepipe enter chimney without passing through a floor, closet, concealed space or the attic?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>5. Is a multi-walled ventilated metal thimble used where the stovepipe goes through any interior wall?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>6. Does the stovepipe enter the chimney horizontally?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>7. Is the stovepipe flush with chimney flue lining, not extending into the chimney?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>8. Is there an air-tight connection between the stovepipe and thimble?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>9. Is there no other equipment such as an oil or gas heater or furnace connected to the same chimney flue as the wood burning stove or fireplace?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>10. Does the chimney extend at least 3 feet above the highest point where it passes through the roof and at least 2 feet higher than any portion of the building within 10 feet of it?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>11. Is the chimney in good repair with no loose bricks, masonry cracks or rotten mortar?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>12. Is the chimney flue lining free from heavy soot deposits, creosote coating, bird nests, leaves and other debris?</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
STOVE PIPES AND CHIMNEYS CONT.

13. Are all unused stovepipe openings in chimneys closed with fireproof flu stops?

ROOFS

1. Is the roofing material fire resistant?

2. Are eavespouts, troughs and roof valleys kept clean of leaves and trash?

TV ANTENNA

1. Is the TV mast or tower sturdily erected, supported with three or more guy wires, and not attached to the chimney?

2. Is the mast or tower located so that if it were to fall, it would fall clear of electrical wires?

3. Is the mast or tower grounded?

4. Is a grounded lightning arrester installed on the lead-in wire to the television?

STORAGE AND STORAGE AREAS

1. Are garages, attics, closets and other storage areas kept free of unnecessary combustible materials or flammable fluids?

2. Are oily, greasy or paint-soaked rags stored in a tightly covered metal container in a well-ventilated area?

3. Are all flammable fluids stored in the original containers or approved safety cans (never glass containers)?

4. If the garage is used for a work area, is there a charged fire extinguisher readily available?

OTHER HOME FIRE HAZARDS

1. Are matches kept in metal containers and out of reach of children?

2. Is the area around the home kept free of tall grass, weeds and rubbish?

3. Is gasoline-powered equipment shut off and allowed to cool before refueling?

FIRE EMERGENCY PLAN

1. Are all sleeping area of the home equipped with an approved smoke detector?
IRE EMERGENCY PLAN CONT.

1. Has the family planned what each member will do in case of fire? (Exit routes, meeting places, etc.)

2. Is the Fire Department phone number posted prominently on each telephone?

3. Does each member of the family who is old enough to use the phone know how to call the Fire Department?

4. Is the residence well-identified by either a special fire number or address sign so it can be located by the Fire Department?

5. Has information been made available to local firemen and neighbors concerning such things as bedrooms used by children or invalids, fuse boxes, LPG and gasoline storage, and water supply?

7. Do all members of the family who are able to handle a fire extinguisher know how to use one?

LIST THE MAJOR HAZARDS IDENTIFIED

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROOF OF COMPLETING HAZARD IDENTIFICATION ACTIVITY

__
(Property owner, parent, guardian) certify that __________ (Name of Club member)
as personally inspected my home for potential fire hazards __________.

(Date)
Caution:
1. Complete hazard identification activities with parent, guardian or property owner present.
2. Do not handle or dismantle any electrical component during hazard identification activities.

ELECTRICAL

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
<th>Does Not Apply</th>
<th>Hazard Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Are all electrical outlets grounded so as to accommodate grounded (3-wire) appliances and equipment? [] [] []

2. Are all junction boxes, outlets, switches and fittings covered with no exposed wires or terminals? [] [] []

3. Are electric wires firmly supported or in conduit? [] [] []

4. Does the wiring insulation appear in good condition, (not cracked, broken or brittle)? [] [] []

5. Are there enough convenience outlets to eliminate the need for "make-shift" wiring and the use of long extension cords? [] [] []

6. Are only heavy-duty rubber-covered cords used outside in damp locations and on motorized equipment? [] [] []

7. Are all extension cords free from frays, broken areas, or cracked plugs? [] [] []

8. Do all electrical appliances and equipment items carry the "U.L." label? [] [] []

9. Are there extra fuses of the correct size located near each fuse box? [] [] []

10. Are heat lamps used only in porcelain receptacles, suspended at least 18 inches above flammable material, kept out of reach of livestock and equipped with a guard over the face of the reflector? [] [] []

11. Are light bulbs protected by metal guards when exposed to livestock? [] [] []

12. Are electric motors located such that there is ample ventilation? [] [] []

13. Are electric motors kept free of dust, chaff, and other combustible material? [] [] []

14. Are dust proof motors used in extremely dry areas? [] [] []
LITHTNIN G PROTECTION

1. Do major farm buildings have approved "Master Label" Lightning protection systems? [] [] []

2. Are the lightning rod cables free from breaks? [] [] []

3. Are points in good condition and on all high projections, cupolas, gables, silos, etc.? [] [] []

4. Are all metal stanchions, door tracks, eavespouts, etc., within 6 feet of a lightning rod cable interconnected into the system? [] [] []

5. Are metal roofs securely grounded to the lightning rod system? [] [] []

6. Are all lightning rod cables located away from fuel storage areas and LPG storage tanks? [] [] []

FLAMMABLE LIQUIDS AND GASES

1. Are above ground gasoline storage tanks at least 40 feet from any building? [] [] []

2. Are labeled safety cans used in storage and handling small quantities of gasoline and other flammable liquids? [] [] []

3. Is the area near fuel storage tanks kept free of weeds and other easily combustible materials? [] [] []

4. Are there "NO SMOKING" signs displayed near fuel storage and refueling areas and in livestock confinement buildings where methane may be present? [] [] []

5. Is there a charged fire extinguisher readily accessible in fuel storage and refueling areas? [] [] []

6. Are LPG (Liquid Petroleum Gas) containers located outside buildings? [] [] []

7. Are LPG containers located on solid foundations? [] [] []

8. Are LPG containers located at least 5 feet away from windows, doors or other building openings? [] [] []

9. Are LPG valves and regulators covered for protection from weather or damage? [] [] []

FARM SHOP

1. Is the welding and metal work area free of readily combustible materials? [] [] []

2. Is there a charged fire extinguisher readily accessible in the shop? [] [] []
FARM SHOP CONT.

3. If painting is done is there ample ventilation to remove fumes from work area?
 Yes No Does Not apply Hazard Corrected

4. Are all cleaning rags kept in a sturdy closed metal container in a well ventilated area of the shop?
 Yes No Does Not apply Hazard Corrected

5. Are solvents, paints, starter fluids, etc., stored in their original containers and protected from potential ignition sources?
 Yes No Does Not apply Hazard Corrected

6. Are "NO SMOKING" signs posted near electric battery charging units?
 Yes No Does Not apply Hazard Corrected

7. Is heating equipment located away from combustible materials?
 Yes No Does Not apply Hazard Corrected

8. Are pesticides, fertilizers and other agricultural chemicals stored away from fuels and potential sources of ignition?
 Yes No Does Not apply Hazard Corrected

9. Is trash burned away from buildings and fuel storage areas?
 Yes No Does Not apply Hazard Corrected

CROP STORAGE AREAS

1. Are crops harvested at appropriate moisture levels to prevent spontaneous heating while in storage?
 Yes No Does Not apply Hazard Corrected

2. If stored hay checked at regular intervals for signs of heating?
 Yes No Does Not apply Hazard Corrected

3. Are hay storage areas well-ventilated?
 Yes No Does Not apply Hazard Corrected

4. Are limited-oxygen silos kept sealed at all times except when loading or unloading?
 Yes No Does Not apply Hazard Corrected

5. Are light bulbs in hay and grain storage areas protected by glass guards?
 Yes No Does Not apply Hazard Corrected

6. Is equipment used in crop storage areas regularly maintained to prevent overheated bearings and belts, slapping chains and sparks from engine exhaust systems?
 Yes No Does Not apply Hazard Corrected

7. Are "NO SMOKING" signs posted in crop storage areas?
 Yes No Does Not apply Hazard Corrected

8. Is there a charged fire extinguisher readily available in each crop storage area?
 Yes No Does Not apply Hazard Corrected

FARM MACHINERY

1. Is there a charged fire extinguisher located on each tractor and self-propelled machine?
 Yes No Does Not apply Hazard Corrected

2. Is fuel powered equipment shut off and allowed to cool before refueling?
 Yes No Does Not apply Hazard Corrected

FARM MACHINERY CONT.

3. Are all tractors and self-propelled equipment kept free of fuel leaks and all engine and exhaust system surfaces kept free of combustible materials (grease, chaff, crop residue, etc.)? [] [] [] []

4. Are exhaust systems in good condition and engines properly tuned to prevent sparks and backfiring? [] [] [] []

IN CASE OF FIRE

1. Is the local Fire Department's telephone number located prominently on every telephone? [] [] [] []

2. Does each member of the family who is old enough to use the phone and every farm employee know how to call the Fire Department? [] [] [] []

3. Is the farm clearly identified by a fire number or other sign to assist location of the farm by the Fire Department? [] [] [] []

4. Has information been made available to local firemen and neighbors about special fire fighting problems such as storage of pesticides, fuel storage, and available water supplies? [] [] [] []

5. Are extinguishers selected for the types of combustibles and flammables in the areas where they will be used?
 - Class A - Ordinary combustible materials fires
 - Class B - Flammable liquid or grease fires
 - Class C - Electrical equipment fires
 - Class A-B-C - All purpose

6. Are all extinguishers fully charged and properly serviced on a regular basis (once a year)? [] [] [] []

7. Are all members of the family who are old enough to handle an extinguisher, and every farm employee, familiar with using a fire extinguisher? [] [] [] []

8. Is there a ladder readily available which is long enough to reach the roof of the tallest building on the farm? [] [] [] []

9. Is there a garden hose available for instant use in each major building? [] [] [] []

10. Is there enough water available to fight fires during all seasons of the year? [] [] [] []
LIST OF MAJOR HAZARDS IDENTIFIED

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

PROOF OF COMPLETING HAZARD IDENTIFICATION ACTIVITY

I ___________________________ certify that
(Property owner, parent, guardian)

____________________________ has personally surveyed
(Name of Club Member)

my farm buildings for potential fire hazards ____________________ (Date)
FIRE PREVENTION AND CONTROL
MEMBER'S GUIDE
LESSON V
DEVELOP A FIRE ESCAPE PLAN

This lesson is designed to help members understand the importance of home fire escape plans and important factors to consider in developing such a plan. You should develop a home fire escape plan for your home as part of this lesson.

OBJECTIVES:

1. List six parts of a good fire escape plan.

2. List four precautions or practices which can reduce the seriousness of a home fire.

3. List the number you would call to reach your fire department.

4. Give the two escape routes you would recommend from your living and/or family room, your bedroom, and from your parents' bedroom.

5. Develop a complete emergency fire plan from your home, with the assistance of your parents and school-aged brothers and sisters.

6. Conduct both day and night fire drills at your home. Determine how long it took all members to reach the meeting place. Go back into the house and discuss mistakes made, i.e. doors and windows left open, use of wrong exit, failure to check for small children, etc.

7. Demonstrate how to roll out of bed and crawl or creep out of a smoke filled room.

PLAN FOR ESCAPE:

Have you ever had a fire drill at school? Sure you have, maybe several each year. But have you ever had a fire drill at home? Probably most
of you never have. You spend 6-8 hours a day, five days a week, about 180 days a year in school. But you spend 10-15 hours a day or more at home, 365 days a year. Doesn't it make sense to have fire drills at home?

Despite all our efforts to prevent fires, they still can and do happen. What would you do if you awoke in the dark of night to the strong smell of smoke? Would you do all the right things? Every family should have a plan of action to first save lives; second, to save property. All members of the family should help plan and understand their fire escape plan.

THE ESCAPE PLAN

The major parts of an emergency fire escape plan for your home are:

1. All school-aged children and adults should know the two best escape routes from every room in the house.

2. Develop a plan to see that all members of the family are informed rapidly in case of a fire.

3. Develop a plan whereby teenagers and adults understand their responsibility in getting younger members of the family out of the home.

4. Arrange for a meeting place for all members of the family so they can be accounted for after leaving a burning building.

5. Make certain that windows and screens can be easily opened, removed or broken.
6. Provide a means of escape from the second floor: ladders, ladder ropes, ropes, etc.

7. Have an arrangement with neighbors so that you can reach them in an emergency at any hour of the day or night.

8. Hold regular family fire drills.

OTHER PRECAUTIONS AND PRACTICES:

As important as the escape plan are plans to control the seriousness of the fire. People have died in fires because they did not know simple precautions or life-saving practices. They didn't break a window to escape. They opened the wrong door. They went back into a burning building for no good reason. Here are some clues to help you stay alive:

1. Get out, or be certain you can get out, before calling the fire department. Know the fire department number. Do you dial 911, 0, or some other number? Have this number posted by all telephones.

2. Close doors and windows. Limit the oxygen supply to the fire and attempt to contain the fire in the room where it started.

3. Touch a closed door with the back of your hand. If it is warm, don't open, as the fire will rush into the room.

4. If there is smoke in the room or if you know a fire is burning out in the hall or another room, crawl or creep out of the house. Stay low, the air \(O_2 \) supply will be better near the floor.

STAY LOW- Crawl out of smoke filled rooms
5. Know how to break a window without injury to yourself. What item would you use? How would you protect your hands, arms, face, eyes? Grab the item used with a towel or blanket which will cover your hands and arms. Turn your face away from the window and close your eyes.

6. Know where your fire-fighting tools are located, the fire extinguishers, garden hoses and buckets, sources of water, fire blankets. Know how to use them.

7. Stay calm. Think before you act. The best way to stay calm is to be informed. If you know what to do and if you have practiced home fire drills, your chances of staying calm and doing all the right things in case of a fire are greatly increased.

FIRE FIGHTING REQUIRES JUDGMENT

It's a small fire in the frying pan, on the ironing board, in a chair or waste basket. Or it's a big fire - it's 2:00 a.m. and you awake to a smoke-filled room. Or you look downstairs and the entire room is on fire. Or you come home late at night and flames are coming out of the windows or through the roof. What actions would you take in each case? Would they be the same? Would your action be the same if you were home alone as it would be if the entire family was in the house?

Sometimes the correct procedure would be to fight the fire first and then call the fire department (as in a small fire). Another time the best judgment would be to first call the fire department and secondly to fight the fire. Other times, whenever there is any serious risk to people, escape from the building first, then call the fire department, and then do what you can to control the fire without risking injury or death to yourself or others.
WORKSHEET
LESSON V
DEVELOP A FIRE ESCAPE PLAN

1. List six parts of a good home fire escape plan.
 1.
 2.
 3.
 4.
 5.
 6.

2. List four precautions or practices which can reduce the seriousness of a home fire.
 1.
 2.
 3.
 4.

3. The local telephone number to call to report a fire to the fire department is ____________.

4. Complete a fire escape plan showing two escape routes from each room, using the attached floor plan of a home.

5. Draw a floor plan of your home showing two escape routes from each room:
 - Detailing the responsibility for assuring that young children are removed.
 - Identifying the out-of-house meeting place for family members.
 - Method of contacting neighbors.
6. Give a written and/or oral report of your experience with a home fire drill.

EXTRA PROJECT

Develop a model of your home showing rooms, doors and windows. Using two colors of yarn, show the "best" and "alternate" escape routes from each room. Display your Model Fire Escape Plan at a 4-H meeting, fair and/or at other events.
DEVELOP A FIRE ESCAPE PLAN

FLOOR PLAN

BEDROOM
10'-8"X11'-2"

BEDROOM
12'-4"X11'-0"

LIVING ROOM
10'-4"X11'-2"

KITCHEN
13'-0"X11'-2"

UTILITY
13'-0"X11'-2"

STORAGE
12'-0"X12'-0"

CARPORT
12'-0"X23'-0"

BATH

PORCH

PATIO
7'-6X11'-6"
FIRE PREVENTION AND CONTROL
MEMBER'S GUIDE
LESSON VI
HEAT AND SOME DETECTORS

This lesson is designed to help you understand the advantages of having smoke detectors in the home, types of detectors, where smoke detectors should be located, and smoke detector maintenance.

OBJECTIVES:

1. Name two major types of detectors.

2. Name the best type of detector to install in your home if only one detector is to be purchased.

3. Given a floor plan of a home, indicate where you would locate a smoke detector if only one is installed.

4. Given a floor plan of a home, indicate where and what type smoke detectors you would install if you had the money to purchase three detectors.

5. Given a smoke detector and an owner's manual, demonstrate your ability to determine if it is working.

THE HAVE S AND HAVE NOTS:

Do you have fire detectors in your home? In 1970 only a few homes had detectors. By 1977, one home in four had a detector. Now half of the families in America are protected by detectors. Is your family protected? Do you have detectors? Are you a "have" or "have not"?

Families with detectors are much more likely to survive a home fire. Your chances of surviving a home fire are 30-50 percent better if you have working detectors in your home. But for detectors to do the most good you
must have the right type located in the right places and they must be in working condition.

TYPES OF DETECTORS:

There are all types of detectors. There are heat, gas and smoke detectors and there are different types of each. Some operate on batteries, others are wired to the electrical circuits within the house. Each type of detector has its advantages and purposes.

However, smoke detectors with ionization or photoelectric alarms are most effective because most home fires are of a smoldering type and in their early stages normally cause more smoke than heat or gases.

It is important that quality detectors be purchased and that they have the Underwriter's Laboratory (UL) or Factory Mutual (FM) label which ensures that the product has been tested for sensitivity and reliability. It is also important that the detector is easy to test, does not give false alarms, and gives a loud distinct warning signal which will awake sleeping people.

NUMBER AND LOCATION OF DETECTORS:

All homes should have minimum of one smoke detector. The single detector should be located on or near the ceiling in the hallway near the bedrooms. If there are bedrooms in more than one location of the house, at opposite ends of the house or on different floors, additional smoke detectors should be installed. The National Fire Prevention Association recommends a minimum of one smoke detector to protect each sleeping area plus one for each additional story of the home.

For additional protection you may wish to locate smoke or heat detectors in the kitchen, attic, basement and garage. A totally protected home
should have different types of detectors, some wired to the electrical system of the home and others operated by batteries.

Locate your smoke detectors on the ceiling or high on the wall. The preferred location may be in the center of the ceiling at the top of a stairway or at the entrance to the hallway leading to the bedroom area of the home. Ceiling mounted detectors should be a minimum of 4" from the wall; wall mounted detectors should be from 4-12" from ceiling. Smoke is slow going into corners.

Detectors normally come with instructions as to where and how they should be installed. Follow these directions. If you have additional questions and problems about detectors, your local fire department will be able to assist you.

KEEP YOUR DETECTOR WORKING:

Detectors that don't work are dangerous! They give us a feeling of safety which does not exist. Keep your detector working. Read your owner's manual to learn how to test your detector and how often. Then do it!

Check the power source for your detector regularly. Battery operated detectors must produce a distinct warning when the batteries are getting weak. Replace them immediately.

Always check your detector after a return from a trip. A detector with a dead battery or disconnected electrical cord has no safety value.

Here are some additional hints to keep your detector working properly.

1. Don't paint it.

Clean it once or twice a year. On many models, holding a vacuum hose to the openings will remove the dust and dirt. If you wash the outside surface, use care not to get water into the detector.
3. Keep the detector out of drafty areas where the air movement might keep smoke or heat away from the detector.

Don't become careless and lulled into a false sense of security just because you've installed a smoke detector.

Even after the smoke detector warns you of a fire, you have only moments to escape. Unless you have planned and practiced family escape plan, those few moments of warning might not be enough.
Heat and Smoke Detectors

1. Name two types of detectors. Put a star in front of the type you would purchase if only one was to be installed in a home.
 1.
 2.

2. If only one smoke detector were to be installed in a home, would you locate it in the:
 ____ 1. Kitchen
 ____ 2. Hallway leading to the bedrooms
 ____ 3. Family room
 ____ 4. Front entry way

3. If a smoke detector is installed on a ceiling it should be located at least ______ inches from the wall; if installed on a wall it should be at least ______ inches from the ceiling.

4. List four rules of installation and maintenance to ensure that your smoke detector will operate properly.
 1.
 2.
 3.
 4.

5. On a floor plan of a home, indicate where and what type detectors you would recommend installing. See copy of floor plan attached.

6. Demonstrate your ability to determine if a detector is working.
FIRE PREVENTION AND CONTROL

MEMBER'S GUIDE

LESSON VII

YOUR FIRE DEPARTMENT

This lesson is designed to help you understand the importance of being able to quickly contact the fire department in case of fire and to accurately give directions to the dispatcher. You will also learn about the basics of operation of your local department.

OBJECTIVES:

1. Post the fire department telephone number on or near all telephones you might use to report a fire.

2. Practice, orally, giving the address and directions you would give to a fire station dispatcher to enable the fire department to locate your home.

3. Locate the sources and amount of water available to fight a fire at your home or farm.

4. Make a list of ten characteristics of your fire department.

BEFORE YOU NEED THE FIRE DEPARTMENT:

An understanding of fire, the removal of fire hazards, inspections, the use of fire detectors, development of escape plan and availability of fire extinguishers does not mean that some day you will not need the services of the fire department. When you need the fire department, you will need it right then and lost time is costly.

There are things you should do before you need the fire department to fight a fire. What are some of these things?

1. Post the fire department number by all telephones.
2. Determine how you would call the fire department if you could not use the telephone in your home.

3. Know where your fire station is located and be able to explain to the dispatcher how to reach your home.

4. Explain to the fire department the type of fire and seriousness of the fire.

5. Know the source(s) of water to fight a fire. If you live in a city, know the location of the nearest hydrant. If no hydrants are available, know what other water supplies are available, such as wells, ponds, etc. If water supplies are limited, the fire department should know this.

6. If your home is off a main street or road, down a long driveway or not visible from the road, make plans to have someone go out to the main street or road to direct the fire trucks to the fire.

7. Learn to use your fire department to prevent fires, not just to fight fires. Call or visit your fire department if you have questions about ways to make your home more fire-safe. Many fire departments provide a service of visiting homes and businesses to conduct inspections and give suggestions of how to make your place more fire safe. Many fire insurance companies provide these same services.

YOUR FIRE DEPARTMENT:

There are three types of fire departments. There are professional (paid) fire departments, which are staffed with full-time trained firefighters. If you live in a rural area, town or small city you might have a volunteer (unpaid) fire department. These firemen are also trained, but work at other jobs and are normally not paid as firefighters. Between
these two types in a combination fire department with a small paid full-time staff supplemented by a group of volunteer firefighters. What type does your community have?

At a full-time professional fire department, when a fire call comes into the stations, a firefighting is immediately sent to the fire. The firefighters are at the station.

At a volunteer station, the fire may come into a police station, home or some other location. A siren, bell or horn is blown informing firefighters, working at other jobs within the community, of the fire. They then rush to the fire station to respond to the fire. In the better equipped and organized volunteer departments, the volunteers use radio monitors at home and work. They can go directly from home or work to the location of the fire. Naturally, there must be some organization so that some of the firefighters will first go to the fire station to get the firefighting equipment.

AT THE FIRE:

The firefighter's first job at any fire is the protection of human lives. This not only means people who might be in the burning building, but also other people who are at the scene of the fire, including the firefighters.

Firefighting teams always have a fire chief. It is his responsibility to assign specific jobs to the other firefighters. This may include rescuing people, pets and personal property, crowd control and protection of other buildings, in addition to fighting the fire. Firefighting teams must be well trained and disciplined to do the task assigned. Not everyone can drive the truck or man the water hose!
SUPPORT YOUR FIRE DEPARTMENT:

Your call to the local fire department puts into action an organization of trained firefighters who have the knowledge to prevent, control and fight fires. Their work is often dangerous. They must attend meetings, schools, training sessions and drills on a regular basis. They are always learning about new firefighting techniques and better ways to prevent fires. And there never seems to be enough dollars for the amount and kind of equipment needed.

While tax dollars fund all or part of most fire department, volunteer departments often find it necessary to raise part or all of their necessary funds. Various fundraising activities are used, such as socials, suppers, carnivals and card parties.

Get to know your fire department. Know their needs. Support your fire department. Help them obtain the resources necessary to provide quality fire protection to your community. If you are really interested in supporting your local fire department, you might want to consider becoming a firefighter yourself in the years ahead.
WORKSHEET
LESSON VII

YOUR FIRE DEPARTMENT

1. The telephone number of your Fire department is _______________.
 This number is posted by your telephones. _____ Yes _____ No.

2. The address or location of your fire department is:

3. The directions from the fire station to your home are:

4. The best sources of water to fight a fire at your home or farm are:

5. Your local fire department is a _______________ type department.

6. The name of your fire chief is _______________.
 The department has _______________ firefighters.

7. Fire calls are received at ____________________________.

8. Three major pieces of firefighting equipment owned by your fire
 department are:
 1. ____________________________ 2. ____________________________
 3. ____________________________

9. Your fire department is financed by:

10. The major needs of your fire department are:
 1. _______________ 2. _______________

11. In addition to fighting fires, what other services are provided by your
 fire department?
 1. _______________
 2. _______________
 3. _______________